

Nuno Miguel Reis Peres

Santiago de Compostela, 17th of Octobler 2016

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene

2 SPPs in graphene

- Graphene monolayer
- Coupling to surface optical phonons
- Graphene double-layer
- 3 Excitation of SPP's
- Plasmonics in graphene periodic structures
 - 5 Plasmons in nanostructures

Prelude

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene

2 SPPs in graphene

- Graphene monolayer
- Coupling to surface optical phonons
- Graphene double-layer
- 3 Excitation of SPP's
- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

Prelude

Some encouraging results

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene
- 2 SPPs in graphene
 - Graphene monolayer
 - Coupling to surface optical phonons
 - Graphene double-layer
- 3 Excitation of SPP's
- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Nuno Peres

Prelude

Some encouraging results

Lucas Cranach (1472-1553)

Venus and Cupid (1537)

Nuno Peres

Prelude

Some encouraging results

Artistic view of a graphene sheet

Graphene honeycomb lattice

Prelude

Some encouraging results

ACS Nano 8, 1086 (2014)

 Plasmonics deals with the excitation, manipulation, and utilization of surface plasmon-polaritons

 surface plasmon-polaritons are hybridized excitations of radiation with the collective charge oscillations of an electron gas.

Nuno Peres

Prelude

Some encouraging results

Lycurgos cup (4th century AD)

Gold and Silver nanoparticles around 50 nanometres in diameter

Lycurgus Cup at the British Museum, 4th century AD.

Nuno Peres

Prelude

Some encouraging results

Stained glass (sowing plowed fields)

"September"

500

Prelude

Some encouraging results

nanoparticles

Dependence on size and shape

Nuno Peres

Prelude

Some encouraging results

Artistic view of a graphene nanostructure

Nanodisk

Prelude

Some encouraging results

- In general, metal plasmonics is explored in the visible and near-IR
- What about its use in the mid- and far-IR?

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Prelude

Some encouraging results

Plasmonics in the mid- and far-IR?

Limitations

- Poorly confined in the mid-IR and in the far-IR (THz)
- Reduced field enhancement
- Relatively large losses (when compared to other candidates)

2000 nm = 2 μ m = 150 THz (\sim Mid-IR)

$$\zeta_M \propto \frac{c}{\omega} \sqrt{\frac{1}{|\epsilon_1|}} = 2\pi \frac{3 \times 10^8}{1.5 \times 10^{14}} \sqrt{\frac{1}{100}} \sim 1\mu \mathrm{m}$$

Prelude

Some encouraging results

What about graphene?

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Nuno Peres

Prelude

Some encouraging results

Confinement in graphene (
$$\lambda = 2000$$
nm)

Penetration depth in the surrounding dielectric

$$\zeta_G \propto \frac{\alpha}{\hbar c} \frac{E_F}{(\hbar\omega)^2} = \frac{1}{137} \times 0.2 \times \frac{0.5}{0.6^2} \sim 0.002 \mu \mathrm{m}$$

Comparing metal with graphene

$$\frac{\zeta_G}{\zeta_M} \sim 2 \times 10^{-3}$$

◆□▼ ▲□▼ ▲目▼ ▲目▼ ▲□▼

Nuno Peres

Prelude

Some encouraging results

Attenuation in graphene ($\lambda = 2000$ nm)

Attenuation length

$$d_G \propto \alpha \hbar c \frac{E_F}{\Gamma \hbar \omega} = \frac{1}{137} \times 0.2 \times \frac{0.5}{0.6 \times 16 \times 10^{-3}} \sim 0.075 \mu \mathrm{m}$$

Comparing the two lengths

$$\frac{d_G}{\zeta_G} \sim \frac{0.075}{0.002} \sim 40$$

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Prelude

Some encouraging results

Some properties

Graphene plasmonics:

- Strong confinement in the mid- and far-infrared (THz)
- Small attenuation
- Tunable due to the real-time control of *E_F*
- Large field enhancement
- Exist at room temperature (contrary to the 2DEG)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Prelude

Some encouraging results

Graphene plasmonics:

Applications in bio-sensing

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Nuno Peres

Prelude

Some encouraging results

An example: A graphene-based biosensor

Infrared biosensors based on graphene plasmonics —modeling: Phys. Chem. Chem. Phys., **15**, 17118 (2013)

Nuno Peres

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Prelude

Some encouraging results

A fiber-optic graphene-based biosensor

Prelude

Some encouraging results

Far-IR plasmonics

Graphene plasmonics:

But what is the motivation to study far-IR (THz) plasmonics?

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

Nuno Peres

Prelude

Some encouraging results

Scientometric indicators for graphene plasmonics in the THz

Web of Science —search key: Graphene+plasmons+THz:

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Prelude

Motivation

Outline

- Some encouraging results
- Motivation
- Conductivity of graphene
- 2 SPPs in graphene
 - Graphene monolayer
 - Coupling to surface optical phonons
 - Graphene double-layer
- 3 Excitation of SPP's
- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Nuno Peres

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Prelude

Motivation

Terahertz radiation

1 THz corresponds to a wavelength of 300 μ m, to a wave number of 33 cm⁻¹, and to an energy of 4.1 meV

- visible light: creates a photograph
- radio waves: transmit sound
- X-rays: see within the human body
- terahertz waves: create pictures

Fig. 1.5 Photo of racquetball bat (a), the bat in a plastic bag (b), and THz wave (0.6 THz) image of the bat in a plastic bag (c)

Prelude

Motivation

e high chemical selectivity

Nuno Peres

Prelude

Motivation

Chemical identification with THz

Cocaine

Terahertz Frequency Detection and Identification of Materials and Objects, edited by Robert E. Miles (Springer, 2007)

Nuno Peres

Prelude

Motivation

What is the relevance of THz?

[X.-C. Zhang and Jingzhou Xu (2009)]

"Many biological and chemical compounds have distinct signature responses to THz waves due to their unique molecular vibrations and rotational energy levels":

Possible applications:

- diagnosis of a disease
- detection of pollutants
- sensing of biological and chemical agents
- quality control of food products
- plastic explosives could be distinguished from suitcases, clothing, common household materials, and equipment

Prelude

Motivation

An example: Cocaine, Codeine, and Sucrose

Terahertz Frequency Detection and Identification of Materials and Objects, edited by Robert E. Miles, (Springer, 2007)

Prelude

Conductivity of graphene

Outline

- Some encouraging results
- Motivation
- Conductivity of graphene

2 SPPs in graphene

- Graphene monolayer
- Coupling to surface optical phonons
- Graphene double-layer
- 3 Excitation of SPP's
- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Nuno Peres

Prelude

Conductivity of graphene

Graphene: optical conductivity

$$\sigma_g = \sigma^{intra}(\omega) + \sigma^{inter}(\omega)$$

Nuno Peres

Prelude

Conductivity of graphene

Graphene: optical conductivity

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene

2 SPPs in graphene

- Graphene monolayer
- Coupling to surface optical phonons
- Graphene double-layer
- 3 Excitation of SPP's
- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Basic Notions in Graphene Plasmonics SPPs in graphene

Graphene monolayer

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene

2 SPPs in graphene

- Graphene monolayer
- Coupling to surface optical phonons
- Graphene double-layer
- 3 Excitation of SPP's
- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

SPPs in graphene

Graphene monolayer

Graphene monolayer

Dispersion relation – TM-SPP

TM solutions:

$$\begin{split} \mathbf{E}_{j} &= (E_{j,x} \mathbf{\hat{x}} + E_{j,z} \mathbf{\hat{z}}) e^{iqx} e^{-\kappa_{j}|z|} \\ \mathbf{B}_{j} &= B_{j,y} e^{iqx} e^{-\kappa_{j}|z|} \mathbf{\hat{y}} \end{split}$$

Nuno Peres

SPPs in graphene

Graphene monolayer

Graphene monolayer

Dispersion relation – TM-SPP

SPPs in graphene

Graphene monolayer

Graphne monolayer

TM-SPP's: numerical solution

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで
SPPs in graphene

Graphene monolayer

Graphne monolayer

TM-SPP's: numerical solution

Nuno Peres

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

SPPs in graphene

Graphene monolayer

Graphne monolayer

TM-SPP's: numerical solution

Nuno Peres

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

SPPs in graphene

Graphene monolayer

Graphne monolayer

TM-SPP's: numerical solution

Nuno Peres

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 − のへで

Nuno Peres

SPPs in graphene

Graphene monolayer

SPP's in graphene: non-local corrections

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Nuno Peres

SPPs in graphene

Graphene monolayer

Surface plamon-polaritons in graphene

SPP's EM field

TM SPP's

- THz range (up to "mid-IR")
- $\lambda_{GSP} \ll \lambda_0$ (até $\lambda_{GSP}/\lambda_0 \sim \alpha$)
- High spatial confinement
- real-time controlled plasmonics

・ロト・日本・日本・日本・日本・日本

SPPs in graphene

Coupling to surface optical phonons

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene

2 SPPs in graphene

- Graphene monolayer
- Coupling to surface optical phonons
- Graphene double-layer

3 Excitation of SPP's

- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Nuno Peres

(日) (日) (日) (日) (日) (日) (日)

SPPs in graphene

Coupling to surface optical phonons

Engineering surface plasmon-polaritons dispersion

• Coupling to optical surface-phonons of the substrate

Nuno Peres

SPPs in graphene

Coupling to surface optical phonons

Graphene plasmonic spectrum (graphene on SiO₂): Spectrum

Surface phonon-plasmon-polariton

Nuno Peres

SPPs in graphene

Coupling to surface optical phonons

Graphene plasmonic spectrum (graphene on SiO₂): Loss function

Surface phonon-plasmon-polariton: energy-loss function

SPPs in graphene

Coupling to surface optical phonons

Graphene plasmonic spectrum (graphene on SiO₂): experimental results

Nano Letters 14, 2907 (2014)

See also: Nat. Photonics 7, 394 (2013)

(日)

ъ

SPPs in graphene

Coupling to surface optical phonons

Experimental results

Experiment and theory

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - 釣��

Basic Notions in Graphene Plasmonics SPPs in graphene Graphene double-layer

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene

2 SPPs in graphene

- Graphene monolayer
- Coupling to surface optical phonons
- Graphene double-layer
- 3 Excitation of SPP's
- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SPPs in graphene

Graphene double-layer

Graphene double-layer

Dispersion relation – TM SPP's

Nuno Peres

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SPPs in graphene

Graphene double-layer

Graphene double-layer

Nuno Peres

SPPs in graphene

Graphene double-layer

Graphene double-layer

SPPs in graphene

Graphene double-layer

Graphene double-layer

Nuno Peres

SPPs in graphene

Graphene double-layer

Graphene double-layer

Nuno Peres

SPPs in graphene

Graphene double-layer

Graphene double-layer

Optical mode

Nuno Peres

◆ロ▶ ◆課 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○のへで

SPPs in graphene

Graphene double-layer

Graphene double-layer

Optical mode

▲ロト▲聞と▲国と▲国と 回 のみぐ

SPPs in graphene

Graphene double-layer

Graphene double-layer

Acoustic mode: highly confined and recently observed

▲ロト▲聞ト★臣ト★臣ト 臣 のQで

SPPs in graphene

Graphene double-layer

Graphene double-layer

Acoustic mode: highly confined and recently observed

▲ロト▲聞と▲国と▲国と 回 のみぐ

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene

2 SPPs in graphene

- Graphene monolayer
- Coupling to surface optical phonons
- Graphene double-layer

3 Excitation of SPP's

- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Excitation of SPP's

Conventional methods

Grating coupling

$$q \rightarrow q + nG$$
, com $G = 2\pi/R$

Nuno Peres

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Excitation of SPP's

Conventional methods

Prism coupling

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Few results for prisma-coupling

Reflectance curves

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene

2 SPPs in graphene

- Graphene monolayer
- Coupling to surface optical phonons
- Graphene double-layer

3 Excitation of SPP's

- Plasmonics in graphene periodic structures
 - Plasmons in nanostructures

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Plasmonics in graphene periodic structures

Theoretical model

 $q \rightarrow q + nG$, com $G = 2\pi/R \implies$ excitation of SPP's becomes possible

・ロ と ・ 留 と ・ 声 と ・ き 、 う ら ぐ .

Plasmonics in graphene periodic structures

Theoretical model

 $q \rightarrow q + nG$, com $G = 2\pi/R \implies$ excitation of SPP's becomes possible

・ロ・・雪・・ モ・・ モ・ うぐの

Experimental setup

Graphene plasmonics for tunable terahertz metamaterials, Nature Nanotechnology **6**, 630–634 (2011)

▲ロト▲聞ト★臣ト★臣ト 臣 のQで

Plasmonics in graphene periodic structures

Applications: periodic graphene-stripes

Nuno Peres

・ロト・西ト・ヨト・ヨト・日・ つへぐ

Results: periodic graphene-stripes

$\mathcal{T}(\omega), \mathcal{R}(\omega) \in \mathcal{A}(\omega)$

Results: periodic graphene-stripes

Dependence on d_g ($q = \pi/d_g$):

Nuno Peres

Results: periodic graphene-stripes

Dependence on n_e:

Results: periodic graphene-stripes

Dependence on n_e :

 $\omega_{GSP} \propto n_e^{1/4}
ightarrow$ specific of graphene

Nuno Peres

・ロト・個ト・ヨト・ヨト ヨ゛ めんぐ

Plasmonics in graphene periodic structures

Theory vs Experiment

Theory vs Experiment

Graphene stripes with different widths:

Nuno Peres
Plasmonics in graphene periodic structures

A polarizer made of graphene ribbons

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ●臣 = の々で

Outline

Prelude

- Some encouraging results
- Motivation
- Conductivity of graphene
- 2 SPPs in graphene
 - Graphene monolayer
 - Coupling to surface optical phonons
 - Graphene double-layer
- 3 Excitation of SPP's
- Plasmonics in graphene periodic structures
- 5 Plasmons in nanostructures

Plasmons in nanostructures

An example of a graphene nanostructure

A single graphene ribbon with W = 100 nm

Nuno Peres

▲ロト▲聞と▲臣と▲臣と 臣 の父父

Plasmons in nanostructures

Scattering of a TM-polarized wave by a graphene strip

A graphene micro-ribbon with $W = 4\mu$ m; $E_F = 0.1, 0.2, 0.3, 0.4$ eV

Plasmons in nanostructures

Scattered magnetic field at resonance: f = 3.25THz for $E_F = 0.4 \text{ eV}$

Scattered magnetic field due to a graphene micro-ribbon with $W = 4\mu m - \Re B_s(x,y)/B_i$

- Graphene presents itself as a promising material for plasmonics
- Properties of GSPs:
 - THz to mid-IR
 - $\lambda_{GSP} \ll \lambda_0$ (high confinement / high field intensity)
 - weak attenuation
 - Exist at room temperature
 - "active plasmonics"

Bludov et al., Int. J. Mod. Phys. B 27, 1341001 (2013)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

- Graphene presents itself as a promising material for plasmonics
- Properties of GSPs:
 - THz to mid-IR
 - $\lambda_{GSP} \ll \lambda_0$ (high confinement / high field intensity)
 - weak attenuation
 - Exist at room temperature
 - "active plasmonics"

Bludov et al., Int. J. Mod. Phys. B 27, 1341001 (2013)

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Summary

Advertisement

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへ(で)